Pre-Calculus: Angle Operations Identities

    Eyles’ Pre-calculus ANGLE OPERATIONS IDENTITIES
    1. Assume that cos(a – ß) = cosa cosß + sina sinß
    BONUS:
    Prove the following identities. ( HINT S )
    2. cos(90? – ß) = sinß apply#1
    3. sin(90? – ß) = cosß ß = 90? – (90? – ß)
    4. cos(-ß) = cosß – ß = 0? – ß
    5. sin(-ß) = -sinß apply#2
    6. cos(a + ß) = cosa cosß – sina sinß apply#1 then #5
    7. sin(a + ß) = sina cosß + cosa sinß apply#2 then #1 then #3
    8. sin(a – ß) = sina cosß – cosa sinß apply#7 then #2 then #3
    9. sin 2ß = 2sinß cosß apply#7
    10. cos 2ß = cos2ß – sin2ß apply#6
    11. cos 2ß = 2cos2ß – 1 apply#10
    12. cos 2ß = 1 – 2sin2ß apply#10
    13. sin
    a
    2
    = ±
    s
    1 – cosa
    2
    apply#12
    14. cos
    a
    2
    = ±
    s
    1 + cosa
    2
    apply#11
    15. Derive Angle Operations Identity # 1 above using the distance formula.
    Eyles’ Pre-calculus ANGLE OPERATIONS PRACTICE PROBLEMS
    Apply the Angle Operations Identities on the previous page to Find the EXACT values.
    16. a) cos(15?
    ) = b) sin(105?
    ) c) sin(-75?
    )
    17. a) cos(
    11p
    12
    ) = b) sin(
    -13p
    12
    ) c) sin(
    -p
    8
    )
    18. a) cos(35?
    )cos(5?
    ) + sin(35?
    )sin(5?
    ) b) cos(95?
    )cos(55?
    ) – sin(95?
    )sin(55?
    )
    19. a) cos(143?
    )cos(83?
    ) + sin(143?
    )sin(83?
    ) b) cos(177?
    )cos(33?
    ) – sin(177?
    )sin(33?
    )
    20. a) sin(35?
    )cos(10?
    ) + cos(35?
    )sin(10?
    ) b) sin(950?
    )cos(650?
    ) – cos(950?
    )sin(650?
    )
    21. a) sin(143?
    )cos(37?
    ) + cos(143?
    )sin(37?
    ) b) sin(177?
    )cos(27?
    ) – cos(177?
    )sin(27?
    )
    22. a) cos(22.5
    ?
    ) = b) sin(-67.5
    ?
    ) c) sin(112.5
    ?
    )
    23. a) cos(
    -p
    12
    ) = b) sin(
    -p
    8
    ) c) sin(
    -3p
    8
    )
    If A B are in quadrant I and sinA =
    2
    5
    and sinB =
    10
    11
    find
    24. a) cos(A + B) b) cos(A – B)
    25. a) sin(A + B) b) sin(A – B)
    26. a) cos(2A) b) sin(2A)
    27. a) cos(
    A
    2
    ) b) sin(
    A
    2
    )
    2

                                                                                                                                      Order Now