##BrO_3^(-)+3Sb^(3+)+6H^(+)rarrBr^(-)+3Sb^(5+)+3H_2O##
We can use to help balance this equation.
Consider first the bromate(V) ion ##BrO_3^-##. It is converted to ##Br^-##
##BrO_3^(-)rarrBr^-##
##+5rarr-1##
Bromine has changed from +5 to -1. This will require the addition of 6 electrons:
##BrO_3^(-)+6erarr6Br^(-)##
To take account of 3 oxygens we will need 6H+ ions to form water:
##BrO_3^(-)+6H^(+)+6erarrBr^(-)+3H_2O## ##color(red)((1))##
This is our first half – equation.
Now for the second:
##Sb^(3+)rarrSb^(5+)##
##+3rarr+5##
Antimony has gone from +3 to +5. This means it needs to give out 2 electrons:
##Sb^(3+)rarrSb^(5+)+2e## ##color(red)((2))##
To get the full balanced equation we can add ##color(red)((1))## to ##color(red)((2))##
The problem here is that the electrons don’t balance.
If we x equation ##color(red)((2))## by 3 you can see we get 6 electrons given out and 6 taken in.
So we x ##color(red)((2))## by 3 ##rArr##
##3Sb^(3+)rarr3Sb^(5+)+6e##
Now we can add both sides of each equation together ##rArr##
##BrO_3^(-)+6H^(+)+cancel(6e)+3Sb^(3+)rarrBr^(-)+3H_2O+3Sb^(5+)+cancel(6e)##
You can see here that the 6 electrons have now cancelled from both sides to give us:
##BrO_3^(-)+3Sb^(3+)+6H^(+)rarrBr^(-)+3Sb^(5+)+3H_2O##
This is a good general method that can be applied to balancing redox equations.